
CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 1 of 118

Converged Heterogeneous Advanced 5G Cloud-RAN Architecture for
Intelligent and Secure Media Access

Project no. 671704

Research and Innovation Action

Co-funded by the Horizon 2020 Framework Programme of the European Union

Call identifier: H2020-ICT-2014-1

Topic: ICT-14-2014 - Advanced 5G Network Infrastructure for the Future Internet

Start date of project: July 1st, 2015

Deliverable D3.4 Intelligence-driven v-security,
including content caching and traffic handling

Due date: 30/06/2017

Submission date: 30/06/2017

Deliverable leader: Eleni Trouva (NCSRD)

Dissemination Level

 PU: Public

 PP: Restricted to other programme participants (including the Commission Services)

 RE: Restricted to a group specified by the consortium (including the Commission Services)

 CO: Confidential, only for members of the consortium (including the Commission Services)

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 2 of 118

[ƛǎǘ ƻŦ /ƻƴǘǊƛōǳǘƻǊǎ ŀƴŘ wŜǾƛŜǿŜǊǎ

Partner Short Name Contributor

National Centre for Scientific Research Demokritos NCSRD Eleni Trouva, Yanos Angelopoulos

Intracom Telecom ICOM Konstantinos Katsaros, Vasilis Glykantzis, Dimitrios Kritharidis, Konstantinos

Chartsias

JCP-Connect JCPC Yaning Liu, Matthias Sander Frigau

i2CAT Fundació I2CAT Javier Fernandez Hidalgo, Albert Vines, Adrian Rosello, Shuaib Siddiqui,

Eduard Escalona

Ericsson ERICSSON Carolina Canales

Partner Short Name Reviewer

COSMOTE COSMOTE Konstantinos Filis

University of Essex UESSEX Michael Parker

Altice Labs ALB Victor Marques

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 3 of 118

Table of Contents
List of Contributors and Reviewers ... 2

1. Introduction .. 8

2. CHARISMA Control, Management and Orchestration (CMO) components10
2.1. Service Policy Manager .. 10

2.1.1. Architecture ... 10

2.1.2. Functional description ... 10

2.1.3. Interfaces ... 10

2.2. NFV Orchestrator ... 18

2.2.1. Architecture ... 18

2.2.2. Functional description ... 19

2.2.3. Interfaces ... 20

2.3. Service Monitoring and Analytics .. 22

2.3.1. Architecture ... 22

2.3.2. Functional description ... 23

2.3.3. Interfaces ... 33

2.4. Open Access Manager ... 44

2.4.1. Architecture ... 44

2.4.2. Functional description ... 48

2.4.3. Interfaces ... 49

2.5. CHARISMA GUI .. 61

2.5.1. Architecture ... 61

2.5.2. Functional description ... 62

2.5.3. Interfaces ... 79

2.6. VNFs/VSFs .. 79

2.6.1. Virtual Firewall ... 79

2.6.2. Virtual IDS .. 82

2.6.3. Virtual Cache Controller .. 85

2.6.4. Virtual Cache .. 86

3. Intelligence-driven v-security, including content caching and traffic handling88
3.1. Slicing and Service Provisioning ... 88

3.1.1. Slicing and Service Provisioning Workflows .. 88

3.1.2. Slicing in SDN wireless backhaul .. 90

3.2. Security .. 96

3.2.1. Security Attack Identification and Mitigation .. 96

3.2.2. Security Service Orchestration and Workflows ... 97

3.3. Content caching ... 99

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 4 of 118

3.3.1. The components of CHARISMA caching system .. 100

3.3.2. Interfaces between the components .. 102

3.3.3. CHARISMA Caching and prefetching services.. 103

3.3.4. vCache peering .. 104

3.3.5. Traffic handling .. 111

4. Conclusions .. 115

References .. 116

Acronyms .. 117

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 5 of 118

List of Figures
Figure 1: CHARISMA CMO platform and individual components.. 8
Figure 2 Security Policy Manager Architecture ... 10
Figure 3 Policy management via CHARISMA GUI - Mock View ... 11
Figure 4: Policy Creation .. 12
Figure 6: SUPAPolicyObject ... 12
Figure 7: SUPAECAPolicyRuleComposite ... 13
Figure 8: SimpleNode .. 13
Figure 9: PolicyEvent ... 13
Figure 10: Policy Action ... 13
Figure 11: Read Security Policy .. 15
Figure 12: Update Security Policy .. 17
Figure 13: Delete Security Policy ... 17
Figure 14: Functional architecture of TeNOR .. 19
Figure 15: Monitoring & Analytics communication with external components. .. 23
Figure 16: Monitoring & Analytics agent based data collection architecture. .. 24
Figure 17: User registration workflow. .. 34
Figure 18: Available user retrieval workflow. .. 35
Figure 19: User modification workflow. .. 35
Figure 20: User deletion workflow. ... 36
Figure 21: Target resource registration workflow. .. 36
Figure 22: Target resource retrieval workflow. ... 37
Figure 23: Target resource modification workflow. .. 38
Figure 24: Target resource deletion workflow. ... 38
Figure 25: Available target resource metric retrieval workflow. .. 39
Figure 26: Alert rule registration workflow. .. 39
Figure 27: Alert rule retrieval workflow. ... 40
Figure 28: Alert rule modification workflow. .. 41
Figure 29: Alert rule deletio workflow. ... 41
Figure 30: Alert notification - event beginning workflow. .. 42
Figure 31: Alert notification - event ending worflow. ... 42
Figure 32: Data querying workflow. .. 43
Figure 33: OAM architecture ... 44
Figure 34: Anatomy of an Angular App ... 62
Figure 35: Listing physical networks .. 63
Figure 36: Adding Openstack to physical network .. 64
Figure 37: Adding OLT to physical network ... 65
Figure 38: Adding ICOM Bakckhaul Network to physical network ... 66
Figure 39: Add TrustNode resource to physical network .. 66
Figure 40: List VNO and users .. 67
Figure 41: Create Virtual Network Operator ς select CAL ... 67
Figure 42: Create Virtual Network Operator ς add users ... 68
Figure 43: List all slices (processed and not processed) .. 68
Figure 44: View Slice .. 69
Figure 45: Create Slice ς Map Virtual Ports ... 69
Figure 46: Create Slice ς Create Virtual resource and map it ... 70
Figure 47: Create Slice ς Set VLAN and assign to VNO .. 70
Figure 48: Upload VNFDs and NSD to catalogue ... 71
Figure 49: List all VNO slices .. 71
Figure 50: Slice details ... 72

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 6 of 118

Figure 51: List NSDs from catalogue .. 72
Figure 52: Instantiate Network Service ... 73
Figure 53: List Security Policies .. 73
Figure 54: Create a Security Policy (Part I) .. 74
Figure 55: Create Security Policy (Part II) .. 75
Figure 56: List Monitoring target resources .. 75
Figure 57: Create Monitoring target resources (PART I) ... 76
Figure 58: Create Monitoring target resources (PART II) .. 77
Figure 59: List Monitoring Alert Rules ... 77
Figure 60: M&A Visualisation of Alerts .. 78
Figure 61: M&A Visualisation of Statistics ... 78
Figure 62: Firewall flow rule creation workflow. ... 80
Figure 63: Firewall flow rule retrieval workflow. .. 81
Figure 64: Specific firewall flow rule deletion workflow. .. 81
Figure 65: Deletion of all firewall flow rules workflow. .. 82
Figure 66: IDS rule registration workflow. ... 83
Figure 67: IDS rule retrieval workflow. .. 84
Figure 68: IDS rule modification workflow. ... 84
Figure 69: IDS rule deletion workflow. .. 85
Figure 70: The workflow of the initialization of CHARISMA caching system by CMO 86
Figure 70 CHARISMA slicing concept ... 88
Figure 71: Basic Flow for an Infrastructure Provider ... 89
Figure 72: Basic Flow for a VNO .. 90
Figure 73: 802.1ad (QinQ) Frame .. 91
Figure 74: SLA per VNO at the backhaul network and S-VLAN Domain .. 91
Figure 75: Detailed QoS classification for multi-operator/multi-customer environments 92
Figure 76: Overview of the network slicing process at the backhaul network ... 93
Figure 77: SDN-enabled backhaul architecture ... 94
Figure 78: VNO slice creation .. 97
Figure 79: VNO-Specific Policy-Controlled Security Management .. 98
Figure 80: The CHARISMA Caching System Architecture .. 99
Figure 81: The Components of the CHARISMA Caching System and their interfaces 101
Figure 82: Network-aware Prefetching Scenario .. 103
Figure 83: The Work Flow for Network-aware Prefetching Procedure Triggered by vCC............................. 104
Figure 84: vCache peering concept ... 105
Figure 85: vCache peering setup. The vCC is omitted for simplicity. .. 105
Figure 86: vCache peering traffic ... 107
Figure 87: CMO workflow for the establishment of a vCache peering service. .. 110
Figure 88: Simplified vCache peering setup. The vCC is omitted for simplicity. ... 110
Figure 89: Traffic handling solution in CHARISMA .. 113

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 7 of 118

9ȄŜŎǳǘƛǾŜ {ǳƳƳŀǊȅ

This deliverable comprises the extended report on the activities of WP3, conducted within the three on-going
tasks for the second year of the project. The developments within these tasks have produced the CHARISMA
Control, Management and Orchestration (CMO) platform software. In line with the objectives of the work
package WP3, this report describes the design and implementation of the individual CMO components, as
well as the software produced to cover the requirements identified for the delivery of intelligence-driven
virtualised security, in addition to content caching and traffic handling.

We first provide the overall architecture of the CHARISMA CMO, based upon the architecture that has already
been presented in previous WP3 documents. This provides the reader with an overall picture of the
CHARISMA CMO, so as to provide the context for the individual components that are described in detail in
the subsequent sections of this deliverable D3.4.

In the main body of this report, we present the individual components of the CMO, providing details on their
internal organization and architecture, functionality, and interfacing: either the internal interfacing between
the modules comprising the component; or the external interfacing, describing the interaction with other
components of the CMO. The components of the CMO detailed in this deliverable are ones that have either
been developed from scratch within the CHARISMA project, or have been inherited from other projects but
extended to serve the CHARISMA objectives. These components include: The Service Policy Manager, the
NFV Orchestrator, the Service Monitoring and Analytics, the Open Access Manager, and the CHARISMA GUI.
In this report, we also describe the internal functions of the VNFs developed within CHARISMA for providing
virtualised security and caching. These VNFs include: virtualised Firewall, Intrusion Detection System, Cache
Controller, and Cache VNFs.

After providing the implementation details for each individual component of the CMO platform, we describe
the interactions between the CMO components in order to achieve network slicing, and delivering
intelligence-driven virtualised security, content caching and traffic handling. The workflow diagrams that
detail the steps and interactions between components are presented.

Finally, in the last chapter of this deliverable, a summary of the conclusions gathered as result of the activities
within the three on-going WP3 tasks is presented.

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 8 of 118

1. LƴǘǊƻŘǳŎǘƛƻƴ

In work package WP3 of the CHARISMA project we have already presented the initial developments and
results for the CHARISMA virtualised security, caching and traffic handling solutions, as described in the
deliverables D3.2 [1] and D3.3 [2]. In this current deliverable D3.4 of CHARISMA, entitled άIntelligence-driven
v-security, including conteƴǘ ŎŀŎƘƛƴƎ ŀƴŘ ǘǊŀŦŦƛŎ ƘŀƴŘƭƛƴƎέΣ ǿŜ ƴƻǿ ǇǊƻǾƛŘŜ ǘƘŜ ŘŜǎƛƎƴ ŀƴŘ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ
details of these final technical solutions as developed within the project.

Figure 1: CHARISMA CMO platform and individual components

All work within WP3 has resulted in the development of individual components that comprise the CHARISMA
Control, Management and Orchestration (CMO) platform. The CMO is the core sub-system of the CHARISMA
architecture that enables control, management and orchestration of the physical and virtual resources
constituting the CHARISMA infrastructure. In fact, as was already indicated in D3.2 [1], the CHARISMA CMO
is focused on fulfilling the following requirements:

¶ Providing network services and virtual network function lifecycle (VNF) management operations over
distributed and virtualized network/IT infrastructures;

¶ Providing slice deployment through the creation and management of multiple, logical and isolated
networks over a common infrastructure;

¶ Providing policy-based programming, automation and control of the underlying infrastructure;

¶ Providing monitoring of networking and IT resources with metrics and notification acquisition from
both physical and virtual resources of the infrastructure;

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 9 of 118

¶ Providing security, content caching and traffic handling through the deployment, configuration and
management of related network services in the form of Virtual Network Functions (VNFs);

¶ Visualisation of all the above provided operations through a Graphical User Interface (GUI) that can
be used by the Infrastructure Provider and the individual Virtual Network Operators (VNOs) that
lease slices over the common CHARISMA infrastructure.

Figure 1 shows the high-level architecture of the CMO platform, which closely follows the ETSI NFV MANO
WG architecture. The components that have been highlighted (in blue) are those that have been developed
in CHARISMA to extend the ETSI architecture. Within the Management and Orchestration group, the
components that have been implemented are the Service Policy Manager, the Service Monitoring and
Analytics, the Open Access Manager and the CHARISMA GUI. Additionally, several extensions have been
developed to TeNOR NFV Orchestrator, the selected NFVO, to serve the objectives of project and make it
fully compatible with the other CHARISMA components. For the Virtualized Network Functions group,
CHARISMA has developed four VNFs that have been designed to provide security and caching services. These
are the virtualised Firewall, the Intrusion Detection System, the Cache Controller and the Cache VNFs. Section
2 details the implementation of the Service Policy Manager, the NFV Orchestrator, the Service Monitoring
and Analytics, the Open Access Manager, the CHARISMA GUI and the CHARISMA VNFs. The included sub-
sections of this chapter describe how all these components have been designed, providing thorough
information on the architecture, functionality and interfacing of each component.

In Section 3, we describe the service lifecycle and the sequence of interactions between the CMO
components, which implement the system use cases for providing slicing, security, content caching and
traffic handling. The sub-section devoted to slicing presents the multi-tenancy implementation in CHARISMA,
providing details on how concurrent deployment of multiple logical, self-contained and independent, shared
or partitioned networks over a common infrastructure, is achieved. The security sub-section explains the co-
operation of the security related CHARISMA components for the delivery of intelligence-driven security.
Towards this objective, the interactions between the Service Policy Manager, the Open Access Manager, the
Service Orchestrator, the Service Monitoring and Analytics, the CHARISMA GUI and the virtual security
functions are outlined. These interactions are targeting to provide automated procedures for the detection
of security threats and the response towards the detected security incidents. Consequently, the content
caching sub-section provides details on the interactions between components, comprising the caching
solution in CHARISMA, for the deployment of CMO-managed virtual caches that aim to reduce service
delivery time. We provide the workflows for the implementation of two interesting scenarios related to
intelligent content caching. The first scenario can be applied in the frame of multi-tenancy, in which different
tenants, operating over the same infrastructure, agree to co-operate and share cached content between
their deployed virtualised caches (cache peering). The second scenario involves intelligent management of
traffic, in the context of caching services, which is based on bypassing caching services for those destinations
that usually lead to cache misses.

Finally, the last section, Section 4, of this deliverable presents the conclusions gathered, as a result of the
activities within WP3 tasks.

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 10 of 118

2. /I!wL{a! /ƻƴǘǊƻƭΣ aŀƴŀƎŜƳŜƴǘ ŀƴŘ
hǊŎƘŜǎǘǊŀǘƛƻƴ ό/ahύ ŎƻƳǇƻƴŜƴǘǎ

2.1. {ŜǊǾƛŎŜ tƻƭƛŎȅ aŀƴŀƎŜǊ

2.1.1. Architecture

The high-ƭŜǾŜƭ ŀǊŎƘƛǘŜŎǘǳǊŜ ƻŦ ǘƘŜ {ta ƛǎ ŘŜǘŀƛƭŜŘ ƛƴ /I!wL{a!Ωǎ earlier deliverable D3.2 [1], although we
note here that tƘŜ {ta ƛǎ 9ǊƛŎǎǎƻƴΩǎ ŎƻƳƳŜǊŎƛŀƭ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ƻŦ ŀ ǇƻƭƛŎȅ ƳŀƴŀƎŜǊΦ Figure 2 illustrates the
{taΩǎ ƻǾŜǊŀƭƭ ŀǊŎƘƛǘŜŎǘǳǊŜΦ

Figure 2 Security Policy Manager Architecture

2.1.2. Functional description

As described in ώмϐΣ /I!wL{a!Ωǎ Service Policy Manager (SPM) is in charge of making a next-best action
recommendation, taking events triggered by the Service Monitoring and Analytics (M&A) function as input,
delivered as a result of monitoring and analysing changes in the status of the resources, and feeding the
recommendation into the Service Orchestration element, in charge of enforcing it towards the network's
virtualized or physical resources. The SPM allows the definition and configuration of different policies for
different use cases (where we point here that CHARISMA also has a particular focus on the Security domain)
and for different domains.

2.1.3. Interfaces

The SPM presents the following external interfaces:

1. LƴǘŜǊŦŀŎŜ ǘƻǿŀǊŘǎ /I!wL{a!Ωǎ D¦LΥ CƻǊ ǇƻƭƛŎȅ ŘŜŦƛƴƛǘƛƻƴΣ ǇǊƻǾisioning and management.

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 11 of 118

2. LƴǘŜǊŦŀŎŜ ǘƻǿŀǊŘǎ /I!wL{a!Ωǎ aϧ! ƳƻŘǳƭŜΥ ¢ƻ ǊŜŎŜƛǾŜ ŀƭŀǊƳǎ ŀƴŘ ƴƻǘƛŦƛŎŀǘƛƻƴǎ ŦǊƻƳ ǘƘŜ aϧ!
module.

3. LƴǘŜǊŦŀŎŜ ǘƻǿŀǊŘǎ /I!wL{a!Ωǎ hǊŎƘŜǎǘǊŀǘƻǊΥ ¢ƻ ǇǊƻǾƛŘŜ ǇƻƭƛŎȅ-based best-next-action
recommendations to be enforced by the Orchestrator.

The interfaces mentioned here are now described in greater detail in the following sections.

2.1.3.1. SPM ς CHARISMA GUI Interface: Policy provisioning and management
/I!wL{a!Ωǎ D¦L ŜƴŀōƭŜǎ ǇƻƭƛŎȅ ǇǊƻǾƛǎƛƻƴƛƴƎ ŀƴŘ ƳŀƴŀƎŜƳŜƴǘΣ ƛΦŜΦ ǎǇŜŎƛŦƛŎŀƭƭȅΣ ǘƻ ŎǊŜŀǘŜΣ ŘŜƭŜǘŜ and edit
policies. Figure 2 reflects a mock view of the CHARISMA GUI (Policy Management tab). Please, see section
2.1.3.2 for actual CHARISMA GUI screen shots.

Figure 3 Policy management via CHARISMA GUI - Mock View

The GUI communicates with the SPM via a REST interface, which supports the following operations: Create,
Update, Read, and Delete policies. These operations are further described in the following sections.

2.1.3.2. Create Security Policy
To create a new policy, the GUI sends an HTTP POST message to the SPM including a JSON structure in its
body, as reflected in the figure below.

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 12 of 118

Figure 4: Policy Creation

In particular, the creation of a security policy requires the following aspects:

ω HTTP Method: POST
ω Resource: spm/CreateSecurityPolicy
ω Headers: Content-Type: application/JSON
ω Request Body: contains one or more policies included in a JSON data structure, according to the

data structures as defined in Figure 3.

The structure of the JSON element to be conveyed in the HTTP POST request is further reflected in the figure
below, and is mostly aligned with the L9¢CΩǎ DŜƴŜǊƛŎ tƻƭƛŎȅ LƴŦƻǊƳŀǘƛƻƴ aƻŘŜƭ ŦƻǊ {ƛƳǇƭƛŦƛŜŘ ¦ǎŜ ƻŦ tƻƭƛŎȅ
Abstractions (SUPA) [3]:

Figure 5: SUPAPolicyObject

The SUPAPolicyObject elements are defined as follows:

1. SUPAPolicyObjectID: This identifier is generated by the SPM and returned in the HTTP Response.

2. SUPAPolicySource: specifies the policy source (e.g. a specific tenant, or VNO in charge of defining a
policy that applies to its network slice).

3. SUPAPolicyTarget: specifies the policy target (resource to which the policy applies).

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 13 of 118

4. SUPAECAPolicyRuleComposite: This parameter is a JSON object itself, which contains all the
information related to the parameters and conditions of our policy, and is structured as a tree. It can
contain one more policy rules, each of which is formed by a condition to be evaluated. The different
policy rules can be similarly combined among themselves by means of any logical operator (i.e. AND,
OR, NOT or XOR). The first node of the tree structure is an operator (PolicyOperator) that combines
the two branches of the tree (LeftNode and RightNode). LeftNode and RightNode can be a new
SUPAECAPolicyRuleComposite object themselves, or they can be a SimpleNode JSON object.

Figure 6: SUPAECAPolicyRuleComposite

The SimpleNode JSON structure represents an event, and it contains the name of the event (Policy Event, as
defined in [1]), the operation type of the event and the value that will be the threshold of the event.

Figure 7: SimpleNode

Figure 8: PolicyEvent

Finally, we have the PolicyAction, which is a JSON object representing the action to be enforced by the
Orchestrator if the policy is activated. It includes two parameters: the first is the name of the specific action
όŎǳǊǊŜƴǘƭȅ ǎǳǇǇƻǊǘŜŘ ǾŀƭǳŜǎ ŀǊŜ άLƴǎǘŀƴǘƛŀǘŜέΣ ά¢ŜǊƳƛƴŀǘŜέΣ ά{ŎŀƭŜψƛƴέ ŀƴŘ ά{ŎŀƭŜψƻǳǘέύΣ ŀƴŘ ǘƘŜ ǎŜŎƻƴŘ ƛǎ ŀ
new JSON object containing all the information regarding the NS instance or the resources to which the action
applies.

Figure 9: Policy Action

JSON example

The following JSON structure exemplifies how to create a new policy that will delete a NS instance if the CPU
is over 90% and the RAM is over 75%, or if a DoS attack is detected. In the PolicyEvent object for a DoS attack,
the SUPAPolOperatorType is empty and Value contains the IP addresses of the attackers.

[{

 "SUPAPolicyObjectID": 1,

 "SUPAPolicySource": "TheSource",

 "SUPAPolicyTarget": "TheTarget",

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 14 of 118

 "SUPAECAPolicyRuleComposite": {

 "PolicyOperator": "AND",

 " leftNode": {

 "PolicyEvent": {

 "PolicyAttribute": "CPU",

 "SUPAPolOperatorType": ">",

 "Value": "90",

 "valueType": "Int"

 },

 "isEvent": true,

 "nodeValue": false

 },

 "rightNode": {

 "PolicyOperator": "OR",

 "leftNode": {

 "PolicyEvent": {

 "PolicyAttribute": "RAM",

 "SUPAPolOperatorType": ">",

 "Value": "75",

 "valueType": "Int"

 },

 "isEvent": true,

 "nodeValue": true

 },

 "rightNode": {

 "PolicyEvent": {

 "PolicyAttribute": "DoS",

 "SUPAPolOperatorType": "",

 "Value": "192.168.1.1",

 "valueType": "String"

 },

 "isEvent": true,

 "nodeValue": true

 },

 "isEvent": false,

 "nodeValue": false

 },

 "isEvent": false,

 "nodeValue": false

 },

 "PolicyAction": {

 "Name": "delete",

 "VNFD": {

 "ns_id": "23456"

 }

 }

}]

2.1.3.2.1. Read Security Policy
¢ƘŜ wŜŀŘ{ŜŎǳǊƛǘȅtƻƭƛŎȅ ƳŜǘƘƻŘ ƛǎ ǳǎŜŘ ǘƻ ǊŜŀŘ ǘƘŜ ǎŜŎǳǊƛǘȅ ǇƻƭƛŎƛŜǎ ǎǘƻǊŜŘ ƛƴ /I!wL{a!Ωǎ {taΦ ¢ƘŜ ǎǇŜŎƛŦƛŎ
parameters of the method depend on whether we want to read all the policies, or just a specific subset.

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 15 of 118

Figure 10: Read Security Policy

Read all policies

To read all the policies, the GUI needs to send an HTTP GET message to the SPM, the details of such a message
being specified below:

¶ HTTP Method: GET

¶ Resource: spm/ReadSecurityPolicy

¶ Headers: Content-Type: -

¶ Request Body: -

Read policy by Policy ID

To read a specific policy the GUI needs to send an HTTP GET message to the SPM, the details of such a
message being specified below. The response message will include a JSON structure containing the specific
policy, according to the details provided in Section 2.1.3.2.

¶ HTTP Method: GET

¶ Resource: spm/ReadSecurityPolicy/id/{PolicyId}

¶ Headers: Content-Type: -

¶ Request Body: -

Where {PolicyId} is the ID of the specific policy that we want to read.

Read policies by Source & Target

To read the policies that match a given source and target we just need to send an HTTP GET message to the
path of the Policy Manager seen below and the SPM will return all the policies associated with such a Source
and Target.

¶ HTTP Method: GET

¶ Resource: spm/ReadSecurityPolicy/SourceAndTarget/{Source}/{Target} Headers: Content-Type: -

¶ Request Body: -

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 16 of 118

Where {Source} and {Target} are the SUPAPolicySource and SUPAPolicyTarget values of the policies we are
searching for.

Read policies by Target

To read the policies that match a given target we just need to send an HTTP GET message to the SPM, being
the details of such a message being specified below. The response message will include a JSON structure
containing the policies that apply to such a Target resource, according to the data structures provided in
Section 2.1.3.2.

¶ HTTP Method: GET

¶ Resource: spm/ReadSecurityPolicy/Target/{Target}

¶ Headers: Content-Type: -

¶ Request Body: -

Where {Target} is the SUPAPolicyTarget value of the policies we are searching for.

Read policies by Source

To read the policies applying to a specific Source (tenant/VNO) the GUI needs to send an HTTP GET message
to the SPM; the details of such a message being specified below. The response message will include a JSON
structure containing all the policies defined by the Source, according to the details provided in Section
2.1.3.2.

¶ HTTP Method: GET

¶ Resource: spm/ReadSecurityPolicy/ Source/{Source}

¶ Headers: Content-Type: -

¶ Request Body: -

Where {Source} is the SUPAPolicySource value of the policies we are searching for.

2.1.3.2.2. Update a Policy
To update a policy by changing some of the parameters of the selected policy, the GUI must use the
UpdateSecurityPolicy method. Such a method needs to be conveyed inside an HTTP POST message including
the parameters specified below and according to the data structures documented in Section 2.1.3.2, which
reflect the policy to be updated and its details.

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 17 of 118

Figure 11: Update Security Policy

¶ HTTP Method: POST

¶ Resource: spm/UpdateSecurityPolicy

¶ Headers: Content-Type: application/JSON

¶ Request Body: contains one or more policies according to the structure seen above

2.1.3.2.3. Delete a policy
To delete a policy, the GUI must use the DeleteSecurityPolicy method. Such method needs to be conveyed
inside an HTTP DELETE message including the parameters specified below and according to the data
structures documented in Section 2.1.3.2, which reflect the policy to be deleted. If the policy is successfully
deleted, the SPM will return an HTTP 2000 response code.

Figure 12: Delete Security Policy

¶ HTTP Method: DELETE

¶ Resource: spm/DeleteSecurityPolicy/{PolicyId}

¶ Headers: Content-Type: -

¶ Request Body: -

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 18 of 118

Where {PolicyId} is the id of the policy value of the policy that we want to delete.

2.1.3.3. IƴǘŜǊŦŀŎŜ ǘƻǿŀǊŘǎ /I!wL{a!Ωǎ aϧ! ƳƻŘǳƭŜΥ !ƭŀǊƳǎ ƴƻǘƛŦƛŎŀǘƛƻƴǎ ŀƴŘ ƛƴǎƛƎƘǘǎ
This interface is described in Section 2.3.3.2.

2.1.3.4. LƴǘŜǊŦŀŎŜ ǘƻǿŀǊŘǎ /I!wL{a!Ωǎ hǊŎƘŜǎǘǊŀǘƻǊΥ 5ŜŎƛǎƛƻƴ ŜƴŦƻǊŎŜƳŜƴǘ
This interface is described in Section 2.2.3.2.

2.2. bC± hǊŎƘŜǎǘǊŀǘƻǊ

2.2.1. Architecture

CHARISMA builds upon T-NOVÁs orchestrator, TeNOR, with new functionalities added to TeNOR as per the
requirements of the CHARISMA project. These functionalities include:

¶ Enable distributed deployment

¶ Direct communication with VNFs

¶ Resource availability verification

¶ Slice awareness

More details about T-NOVA project can be found in [12].

The NFV Orchestrator (TeNOR) interfaces with the Virtualized Infrastructure Management (VIM), to manage
and deploy the network services (NS´s). The Orchestrator also interacts with the VNF directly itself to ensure
its lifecycle management.

At a very high level, the Orchestrator can be seen as two main modules (NS_Manager and VNF_Manager)
and a set of repositories or catalogues. The NS_Manager acts as the front-end and orchestrates all the
incoming requests towards the other elements of the architecture. To deploy a service through the
NS_Manager, a set of catalogues needs to be in place, so as to:

ω Store the available VNFs and NSs;

ω Instantiate NSs and VNFs.

These are represented in the following figure as NS_Catalog and VNF_Catalog.

The other main component is the VNF Manager, which interacts with the NS_Manager. The VNF_Manager is
responsible for the VNF-specific lifecycle management.

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 19 of 118

Figure 13: Functional architecture of TeNOR

2.2.2. Functional description

A brief overview of the main functional entities appears in the following subsections.

2.2.2.1. Network Services Modules
The Network Services Modules refer to the modules dealing with the creation of Network Services, in
particular: NS_Manager, NS_Catalog and NS_Provisioner

The main function of the NS_Manager is to manage the virtualized Network SerǾƛŎŜΩǎ όb{Ωǎύ ƭƛŦŜŎȅŎƭŜ. Since
the NSs are composed of Virtual Network Functions (VNFs) and Physical Network Functions (PNFs), the
NS_Manager can decompose each NS into its constituent VNFs and PNFs. Although the NS_Manager has the
knowledge of the VNFs that compose the NS, it delegates their lifecycle management to a dedicated process
designated by the VNF_Manager (VNFM).

Furthermore, besides orchestrating the virtualized service level operations, therefore abstracting the service
specificities from the business/operational level, the NS_Manager also manages the virtualized infrastructure
resource level operations. It coordinates the resource allocation for specific NSs and VNFs for the various
virtualized infrastructures.

To address the two main functionalities (Network Service and Virtual Network Function) already mentioned
above, TeNOR has two additional modules: NS_Provisioner and VNF_Provisioner. Both modules depend on
another module called HOT (Heat Orchestration Template) Generator that builds the templates (HEAT
templates) needed to provision the resources at the VIM.

2.2.2.2. Virtual Network Functions Modules

The Virtual Network Functions Modules refer to the modules dealing with the creation of VNFs, in particular:
VNF_Manager, VNF_Catalog and VNF_Provisioner. The VNF_Manager (VNMF) is responsible for the lifecycle
management of a VNF. The VNF lifecycle includes the following aspects:

¶ Instantiate: creates a VNF on the virtualized infrastructure using the VNF on boarding descriptor;

¶ Configure: configures the instantiated VNF with the required information to start the VNF (can
already include some customer-specific attributes/parameters);

¶ Update: modifies configuration parameters;

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 20 of 118

¶ Upgrade: changes the software supporting the VNF;

¶ Terminate: releases infrastructure resources allocated to the VNFs.

Similar to the Network Services Modules, the VNF Modules also have a Catalogue and a Provisioner. In this
case, it is called the VNF_Provisioner and it also depends on the Template-Generator.

2.2.2.3. Repositories and catalogues
To deploy a NS and manage its lifecycle, a descriptor of the NS and for the constituent VNFs are stored in the
catalogues.

¶ NS Catalogue: stores all the on-boarded NSs. To support the NS lifecycle management, the
catalogue should contain:

o VNF Forwarding Graph Descriptor (VNFFG): contains the NS constituent VNFs, as well as
their deployment in terms of network connectivity;

o NS Descriptor (NSD): contains the service description, including SLAs, the deployment
flavours, references to the virtual links (i.e. virtual link descriptors, VLDs) and the
constituent VNFs (VNFFG);

o Virtual Link Descriptor (VLD): contains the description of the virtual network links that
compose the service (interconnecting the VNFs).

¶ VNF Catalogue: stores all the on-boarded VNFs. To manage a VNF lifecycle, it requires:

o VNF Descriptor (VNFD): contains the VNF description, including its internal decomposition
in Virtual Network Function Components (VNFCs), deployment flavours and references to
the virtual links (VLDs)

¶ NS & VNF Repositories: The NS and VNF repositories store the record per instantiated NS and VNF,
which can be updated/released during the lifecycle management operations.

2.2.2.4. New functionality added to TeNOR
During the development time of the Charisma project, new requirements arose which triggered the addition
of new functionality:

¶ Distributed deployment: Due to the fact that Charisma will allow to have distributed resources (both
compute and networking) the instantiate method had to be extended. Adding to the previous
capabilities, this extension will make possible to select the CAL where the service will be deployed

¶ Slice awareness: Since the network services will be deployed into a particular slice, which will also be
present across the compute nodes, the instantiate method had to support this requirement. Hence,
when a NS gets deployed a slice has to be selected

¶ Direct communication with VNFs: TeNOR can now start and stop VNFs and initiate an SSH session to
execute commands inside the VM implementing the VNF functionality

¶ Resource availability verification: When deploying a network service, TeNOR checks beforehand if
the required resources are available

2.2.3. Interfaces

2.2.3.1. Internal interfaces
The internal interfaces of the orchestrator are inherited from the TeNOR internal interfaces. More
information on the internal interfaces from TeNOR is available under the internal interfaces for TeNOR [13]
in the T-NOVA project [12].

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 21 of 118

2.2.3.2. External interfaces
TeNORΩǎ main external interfaces are:

¶ Network Service Manager: The main TeNOR operation involves this interface, which is a REST API.

¶ GUI: Web-based GUI to visualize and configure the different operations available for TeNOR. This is
the TeNOR GUI developed within of T-NOVA project.

.ŜŎŀǳǎŜ ƻŦ ¢ŜbhwΩǎ ƳƛŎǊƻ-services architecture approach, each of the previously discussed modules also
exposes a REST API to be mainly consumed by the NS_Manager.

Its public API can be found in this document and each of those modules can be accessed specifically through
the following default ports (which are also configurable):

Table 1: TeNOR Services, External Interfaces

Module Port

NS Catalogue 4011

NS Provisioner 4012

NS Monitoring 4013

NSD Validator 4015

VNF Manager 4567

VNF Catalogue 4568

VNFD Validator 4570

HOT Generator 4571

VNF Catalogue 4572

VNF Monitoring 4573

2.2.3.3. TeNOR API Extensions

Other than the previously described, along the Charisma project new features were required and those
triggered the creation of new interfaces for TeNOR:

¶ Instantiate Network Service : In order to fulfil the Slice Awareness and distributed deployment
requirements, TeNOR receives two new parameters when instantiating the service: Availability zones
and network (which maps with the selected slice)

Method Post

URL /ns-instances

Headers Content-type: application/json

Request Body ns_id, network, availability_zones, PoP_id

Returns
Success: 200- Failure: 400, 401, 404, 500
Body: nsr_id

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 22 of 118

¶ Start and Stop Network Services: New methods to manage the VNF lifecycle have been developed.
This method is to be called when the MAPI (Middleware API) is not available. The middleware API is
an external TeNOR module responsible for VNF lifecycle management. Since this module is not
reliable enough, this new method had to be implemented

Method Put

URL /ns-instances/<nsr_id>/<start | stop>

Headers Content-type: application/json

Returns
Success: 200- Failure: 400, 401, 404, 500

2.3. {ŜǊǾƛŎŜ aƻƴƛǘƻǊƛƴƎ ŀƴŘ !ƴŀƭȅǘƛŎǎ

2.3.1. Architecture

The CHARISMA monitoring implementation addresses multi-site and multi-operator network infrastructure
deployments, with a dynamic usage of infrastructure components. Infrastructure components include the
following three different domains of resources to be monitored:

¶ NFV Infrastructure (NFVI) resources that comprise of physical and virtual compute, network and storage
resources;

¶ SDN-enabled elements, including physical and virtual resources;

¶ Physical devices that do not belong to the previous categories, such as non-SDN compliant network
routers and switches, e.g. eNodeBs, for which we want to capture monitoring information.

The Monitoring and Analytics system is responsible for the management of the metrics captured from the
various infrastructure components, the management of alerts and events based on these metrics, and the
visualization of the available data. It collects metrics from different sources and aggregates these metrics
over a specific timeframe, exploiting several statistical functions or other filtering options. Alert rule
management consists of the creation, deletion and evaluation of alert rules. An exposed API may accept
creation requests based upon one or multiple conditions on the captured metrics, or deletion requests based
on the alert rule identifier. Orchestration-level components receive notification messages of events, by
offering the necessary interfaces for subscribers to receive events of interest. For generating notifications on
events metrics received against the created alert rules and upon an event occurrence, notifications are
distributed to the subscribers of the specific event. Finally, the Visualization component offers a dashboard
for the visualization of captured metrics and created alerts. The high-level architecture of MA components
and the interactions of MA with external components are depicted in Figure 14.

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 23 of 118

Figure 14: Monitoring & Analytics communication with external components.

2.3.2. Functional description

The implementation of the Monitoring and Analytics module is based on the Prometheus white-box
monitoring platform, which is an open-source system monitoring and alerting toolkit. Prometheus uses a
time-series database based on LevelDB, an alert management system, to facilitate the evaluation of alert
conditions, with a series of system metrics exporters acting as agents for the monitored systems. A key aspect
in the data analysis is the Prometheus specific query language, PromQL, which facilitates high performance
time-series data aggregation. The CHARISMA Monitoring and Analytics module extends the Prometheus
platform in the following aspects:

¶ A data model was defined to allow the expression of data queries and alert rules in JSON format instead
of the PromQL language which has much more complex syntax. JSON objects are, ultimately, translated
to PromQL to be used with the underlying Prometheus software.

¶ APIs for Target Resource and Alert Rule registration and management were developed, which were
lacking from the Prometheus platform.

¶ A custom-designed Data Querying API was used as an overlay to the default Prometheus solution, so as
to provide much easier deployment, since it is designed to exhibit only a subset of the Prometheus
filtering capabilities sufficient for the needs of the CHARISMA project.

¶ An Alert Notification mechanism was developed to be compatible with the CHARISMA Service Policy
Manager.

¶ Several custom data collection agents were developed using Prometheus open source libraries.

To extract data from all the infrastructure components, Prometheus agents were installed - whenever
possible - in monitored resources to expose metrics to the monitoring servers in the appropriate data format
(protocol buffer format). The collection of monitoring metrics from the developed MA agents is illustrated in
Figure 15.

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 24 of 118

Figure 15: Monitoring & Analytics agent based data collection architecture.

The default Prometheus agent for *NIX OS environments, Node Exporter, was used for the Debian and RPM
based monitored servers providing hardware and OS metrics exposed by the kernel. For additional metrics,
such as SDN switch flows or rules, custom scripts were developed. Metrics of legacy network devices were
handled by the Prometheus SNMP Exporter agent, which was deployed at the Monitoring & Analytics server.
This agent collects SNMP data from the devices, and then exposes them to the Prometheus server.
Prometheus SNMP Exporter was also used for the MobCache FPGA device. Finally, for network devices
running OpenWRT, the metrics available from the kernel were exposed using a custom metric exporter in
the LUA programming language.

Data Collection Management ς Each resource must be associated with a monitoring agent, which handles
the exposing of the data to the Prometheus server. Virtual resources, such as VNFs and virtual networks, are
automatically registered to be monitored upon their instantiation, and stop being monitored when they are
deleted. With regards to the physical devices comprising the physical infrastructure, the CHARISMA
infrastructure features many such heterogeneous devices. Providing support for all existing network
equipment is difficult, so the adopted approach was aimed at categorizing network devices according to their
compatibility characteristics (OpenWRT, Simple Network Management Protocol (SNMP)). The implemented
solution for each category is generic enough to support the devices used. The collected data are classified
and stored to the time-series database bearing labels that indicate their origin, the permission of access for
each different actor of the system (Infrastructure Owner, Tenants), their service and network graph
information. The user (Infrastructure Owner) is also provided with the ability to perform mathematical
functions on the stored data vectors, such as linear prediction or aggregation. For example, CPU metrics
ǇǊƻǾƛŘŜŘ ōȅ [ƛƴǳȄ ƪŜǊƴŜƭ Ŏƻƴǎƛǎǘ ƻŦΥ άƎǳŜǎǘέΣ άƛŘƭŜέΣ άƛƻǿŀƛǘέΣ άƛǊǉέΣ άƴƛŎŜέΣ άǎƻŦǘƛǊǉέΣ άǎȅǎǘŜƳέΣ ŀƴŘ άǳǎŜǊέ
metrics, and all these for each of the CPU ŎƻǊŜǎΦ ¢Ƙƛǎ ƛƴŦƻǊƳŀǘƛƻƴ Ŏŀƴ ōŜ ŀƎƎǊŜƎŀǘŜŘ ǘƻ ŀ ǎƛƴƎƭŜ άŀŎǘƛǾŜ /t¦
ǇŜǊŎŜƴǘŀƎŜέ ƳŜǘǊƛŎΦ

Alert Rule Management ς This is based on the Prometheus Alert Manager, where alert rules in Prometheus
are described in the PromQL language format. In the context of the CHARISMA project, a data model was
defined which supports the creation of complex logical combination of conditions which are translated to
PromQL rules for evaluation from the Prometheus Alert Manager component. Alert rules can consist of any
number of conditions, whilst a condition can be a combination of logical and mathematical operations that

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 25 of 118

represent a binary result. The current implementation handles the rule translation and the logical
combination of the evaluation results from the Prometheus Alert Manager.

Notification Management ς When all of the alert rule conditions of an alert rule are met, the Alert Manager
generates notifications that are then stored in the management database, along with the data that caused
each condition thresholds to be breached. These are also sent to the subscriber of the alert rule.

Visualisation - Grafana software was used for the visualization of the data. Grafana is an open source tool
for querying and visualizing time series and metrics, that also supports multi-tenant dashboards and out-of-
the-box integration with the Prometheus database. Grafana charts and dashboards were integrated with the
CHARISMA GUI providing a visualization section for the users of the system. Users are provided with
dashboards featuring charts with data of their interest, where the dashboards can be either static or dynamic.
Static dashboards display general usage of resources per user or specific metrics per service requested by
the tenants, whilst dynamic dashboards can be created and modified by the users by adding the visualisation
of any data available to them.

2.3.2.1. Data Model
The Monitoring & Analytics components communicate with the rest of the CHARISMA architecture using
REST Application Programming Interfaces. For the representation of the information involved in these
interactions, the data model described in the following tables was defined.

User: Represents any user that can access the monitoring system.

Table 2: Data model describing the user with all available fields.

User

ID Type Cardinality Description Functionality Comments

id string 1 User ID. Identifier of User.

name string 1 User Name. Description of user.

role string 1 User Role. ¶ - admin

¶ - user

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 26 of 118

Target Resource: Represents any resource in the system that can be monitored.

Table 3: Data model describing the target resource with all available fields. It can contain any number of labels for resource
classification and metrics for specification of the data to be monitored.

target_resource

ID Type Cardinality Description Functionality Comments

user_id int 1 User owning the target
resource.

Assigns target resource to specific
user.

ip string 1 Target Resource IP
address.

IP to be used by Prometheus Server
to scrape data.

name string 1 Target Resource display
name.

Name to be displayed in visualization
data representations.

ssh_credentials container 1 SSH credentials. Contains credentials for SSH
connection to the Target Resource.

- ssh_credentials:
username

string 1 SSH username. SSH username for SSH connection to
the Target Resource.

- ssh_credentials:
password

string 1 SSH password. Optional field. If value is ""(empty
string) or null or field doesn't exist,
then ssh_credentials:
private_key used.
Either password or private_key must
contain a valid value.

- ssh_credentials:
private_key

string 1 SSH private_key. Optional field. Same as above.

label_list list
<container>

1 list of n
elements

List of DB labels. Labels set here will be used on all
metrics for this resource in the time-
series database.

- label_list: label container n See target_resource: label

metric_list list
<container>

1 list of n
elements

List of metrics. Data exporters are Prometheus
clients to be deployed on the Target
Resource.

- metric_list:
metric

container n See target_resource: metric

Table 4: Data model describing the label with all its available fields. It is used to classify time-series data and facilitate filtering when
querying data.

target_resource: label

ID Type Cardinality Description Functionality Comments

key string 1 Label key. Label key is like an additional
column in the time-series DB.
Resource Metrics that have value
on this key can be filtered by it
when querying data.

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 27 of 118

value string 1 Label value. Value corresponding to the label
key.

matching_operator string 1 Matching
operator for
label value.

¶ =: Select labels that are exactly
equal to the provided string.

¶ !=: Select labels that are not
equal to the provided string.

¶ =~: Select labels that regex-
match the provided string (or
substring).

¶ !~: Select labels that do not
regex-match the provided string
(or substring).

Not applicable in target: label_list:
label. Only applicable when
requesting data. Currently only
in expression: label_list: label.

Table 5: Data model describing the target_resource: metric. It is used to specify metrics to be monitored for a target resource.

target_resource: metric

ID Type Cardinality Description Functionality Comments

id int 1 Metric ID Metric identifier available to the CHARISMA GUI by
a new interface: monitoring/get_available_metrics (POST request)

name string 1 Available
metric name

Name of the available metric (eg. "cpu_used_percentage").

Alert Rule: Represents a combination of conditions and the timeframe in which they are
evaluated.

Table 6: Data model describing the alert rule. It is used to represent a combination of conditions which are evaluated and can
trigger an alert event.

alert_rule

ID Type Cardinality Description Functionality Comments

Name string 1 Name of Alert Rule. Identifier of Alert Rule.

Duration container 1 Duration of Alert
condition.

Duration for which the condition must be
true to fire the alarm.

- duration: value int 1 Time value.

- duration: unit string 1 Time unit. ¶ s - seconds

¶ m - minutes

¶ h - hours

¶ d - days

¶ w - weeks

¶ y - years

annotation_summary string 1 Alert summary
message.

Short message to be shown when
displaying the Alert.

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 28 of 118

annotation_description string 1 Detailed Alert
description.

More detailed description about the Alert.

condition container 1

Table 7: Data model of the alert rule condition. It can be and inequality, a logical operation or a PromQL expression.

alert_rule: condition

ID Type Cardinality Description Functionality Comments

category string 1 Type of condition. Defines the way the condition will be
defined.

¶ promql

¶ inequality

¶ logical_operation

promql string 1 PromQL expression. Prometheus Query Language expression.

inequality container 1 Inequality operation. Inequality operation performed
between expressions.

logical_operation container 1 Container defining the logical
operation.

Logical operation performed between
expressions.

Table 8Υ 5ŀǘŀ ƳƻŘŜƭ ƻŦ ŀƭŜǊǘ ǊǳƭŜ ŎƻƴŘƛǘƛƻƴ ƻŦ ǘȅǇŜ άƛƴŜǉǳŀƭƛǘȅέ

alert_rule: condition: inequality

ID Type Cardinality Description Functionality Comments

LHS container 1 Left Hand Side.

- LHS: expression container 1 Container defining the LHS of the inequality. See expression

comparison_operator string 1 Comparison operator of the inequality. ¶ == (equal)

¶ != (not-equal)

¶ > (greater-than)

¶ < (less-than)

¶ >= (greater-or-equal)

¶ <= (less-or-equal)

RHS container 1 Right Hand Side.

- RHS: expression container 1 Container defining the RHS of the
inequality.

See expression

Table 9Υ 5ŀǘŀ ƳƻŘŜƭ ƻŦ ŀƭŜǊǘ ǊǳƭŜ ŎƻƴŘƛǘƛƻƴ ƻŦ ǘȅǇŜ άƭƻƎƛŎŀƭ ƻǇŜǊŀǘƛƻƴέ

alert_rule: condition: logical_operation

ID Type Cardinality Description Functionality Comments

logical_operator string 1 Logical Operator. ¶ AND: intersection

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 29 of 118

¶ OR: union

¶ UNLESS: complement

condition_list list <container> 1 List of conditions.

- condition_list: condition container n See alert_rule: condition

Alert NotificationΥ wŜǇǊŜǎŜƴǘǎ ŜǾŜƴǘǎ ǘƘŀǘ ǊŜǎǳƭǘ ŦǊƻƳ ά!ƭŜǊǘ wǳƭŜέ ŜǾŀƭǳŀǘƛƻƴΦ

Table 10: Data model for alert notification.

alert_notification

ID Type Cardinality Optionality Description Functionality Comments

name string 1 NO Alert
Notification
name.

Identifier of Alert Notification.

description string 1 NO Alert
Notification
description .

 It might
contain Alert
Metadata.

alert_rule_id int 1 NO Alert Rule ID. ID of the Alert Rule that
caused the notification.

See alert_rule_container

alert_metadata_list list 1 list of
n containers

NO Metadata
related to
the Alert
Notification.

Additional information about
the Alert Notification to better
describe the event. eg.
[CPU=64%, RAM=91%,
DOS_ALERT=[10.10.10.12,
10.11.10.15]] (IPs which
violate the condition)

See alert_notification:
alert_metadata

It will be a list
with the value
of every 'metric'
and the
predefined
metadata of
every 'alert'
(VNF specific
alert, eg. IDS
alert)

start_time Timestamp 1 NO Timestamp
of the first
time the
Alert fired.

end_time Timestamp 1 Yes Timestamp
of the last
time the
Alert fired.

 Remains empty
until the
notification
event ends.

state int 1 NO Alert
summary
message.

Active (1)- if the Alert is
currently firing,

Ended (0) - if the Alert has
stopped

Expression: Represents the filtering that can be applied to the time-series database and returns a result set.

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 30 of 118

Table 11Υ 5ŀǘŀ ƳƻŘŜƭ ŦƻǊ άŜȄǇǊŜǎǎƛƻƴέΦ 9ȄǇǊŜǎǎƛƻƴ Ŏŀƴ ōŜ ǳǎŜŘ ǘƻ ǊŜǉǳŜǎǘ ŀ ǎŜǘ ƻŦ ǘƛƳŜ-series data. It ca be of type: function, metric,
alert or mathematical operation.

expression

ID Type Cardinality Description Functionality Comments

type string 1 Expression
type.

¶ "promql": Raw promql expression will be
provided.

¶ "metric": Metric container will be provided.

¶ "alert": Alert container willl be provided.

¶ "constant": Constant floating point value will be
provided.

¶ "mathematical_operation": Mathematical
operation container will be provided.

¶ "expression": Expression container will be
provided.

function container 1 Function to
be applied to
the
expression.

Detailed description of the available functions
can be found here:

https://prometheus.io/docs/querying/functions/

See expression:function

promql string 1 PromQL
expression.

Prometheus Query Language expression.

metric container 1 Metric
container.

Contains breakdown of metric definition which
can be used
in mathematical_operation container.

See expression: metric

alert container 1 Alert
container.

Contains breakdown of alert definition which
can be used
in mathematical_operation container.

See expression: alert

constant float 1 Constant
floating point
number.

Constant floating point number to be used
in mathematical_operation container.

mathematical_operation container 1 Container
defining
Mathematical
Operation.

It can be thought of as one operation (eg. +)
between two or more operands. Operands can
be of type:

¶ "promql": Raw promql expression will be
provided.

¶ "metric": Metric container will be provided.

¶ "alert": Alert container willl be provided.

¶ "constant": Constant floating point value will be
provided.

¶ "operation": Operation container will be
provided.

See expression: mathematical_operation

https://prometheus.io/docs/querying/functions/

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 31 of 118

Table 12: Data model for expression function. It represents functions that can be applied on the query result set of the expression.

expression: function

ID Type Cardinality Description Functionality Comments

name string 1 Name of the function. Identifier of the function.

¶ abs()

¶ absent()

¶ ceil()

¶ changes()

¶ clamp_max()

¶ clamp_min()

¶ count_scalar()

¶ day_of_month()

¶ day_of_week()

¶ days_in_month()

¶ delta()

¶ deriv()

¶ drop_common_labels()

¶ exp()

¶ floor()

¶ histogram_quantile()

¶ holt_winters()

¶ hour()

¶ idelta()

¶ increase()

¶ irate()

¶ label_replace()

¶ ln()

¶ log2()

¶ log10()

¶ minute()

¶ month()

¶ predict_linear()

¶ rate()

¶ resets()

¶ round()

¶ scalar()

¶ sort()

¶ sort_desc()

¶ sqrt()

¶ time()

¶ vector()

¶ year()

¶ <aggregation>_over_time()

group_by_label_key_list list
<string>

n Label key list by which
grouping will occur.

Group result set by label keys in the
provided list.

https://prometheus.io/docs/querying/functions/#abs()
https://prometheus.io/docs/querying/functions/#absent()
https://prometheus.io/docs/querying/functions/#ceil()
https://prometheus.io/docs/querying/functions/#changes()
https://prometheus.io/docs/querying/functions/#clamp_max()
https://prometheus.io/docs/querying/functions/#clamp_min()
https://prometheus.io/docs/querying/functions/#count_scalar()
https://prometheus.io/docs/querying/functions/#day_of_month()
https://prometheus.io/docs/querying/functions/#day_of_week()
https://prometheus.io/docs/querying/functions/#days_in_month()
https://prometheus.io/docs/querying/functions/#delta()
https://prometheus.io/docs/querying/functions/#deriv()
https://prometheus.io/docs/querying/functions/#drop_common_labels()
https://prometheus.io/docs/querying/functions/#exp()
https://prometheus.io/docs/querying/functions/#floor()
https://prometheus.io/docs/querying/functions/#histogram_quantile()
https://prometheus.io/docs/querying/functions/#holt_winters()
https://prometheus.io/docs/querying/functions/#hour()
https://prometheus.io/docs/querying/functions/#idelta()
https://prometheus.io/docs/querying/functions/#increase()
https://prometheus.io/docs/querying/functions/#irate()
https://prometheus.io/docs/querying/functions/#label_replace()
https://prometheus.io/docs/querying/functions/#ln()
https://prometheus.io/docs/querying/functions/#log2()
https://prometheus.io/docs/querying/functions/#log10()
https://prometheus.io/docs/querying/functions/#minute()
https://prometheus.io/docs/querying/functions/#month()
https://prometheus.io/docs/querying/functions/#predict_linear()
https://prometheus.io/docs/querying/functions/#rate()
https://prometheus.io/docs/querying/functions/#resets()
https://prometheus.io/docs/querying/functions/#round()
https://prometheus.io/docs/querying/functions/#scalar()
https://prometheus.io/docs/querying/functions/#sort()
https://prometheus.io/docs/querying/functions/#sort_desc()
https://prometheus.io/docs/querying/functions/#sqrt()
https://prometheus.io/docs/querying/functions/#time()
https://prometheus.io/docs/querying/functions/#vector()
https://prometheus.io/docs/querying/functions/#year()

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 32 of 118

Table 13Υ 5ŀǘŀ ƳƻŘŜƭ ŦƻǊ ŜȄǇǊŜǎǎƛƻƴ ƳŜǘǊƛŎ όƴƻǘ ǘƻ ōŜ ŎƻƴŦǳǎŜŘ ǿƛǘƘ άǘŀǊƎŜǘ ǊŜǎƻǳǊŎŜ ƳŜǘǊƛŎέύΦ Lǘ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ǘƛƳŜ-series data of
a specific metric.

expression: metric

ID Type Cardinality Description Functionality Comments

name string 1 Metric name. It is the metric identifier in the time-series
DB.

The default metric list
will be provided.

label_list list
<container>

1 Filter labels. Labels to be used as filters for the selection
of the metric. (eg. metric_name)

duration container 1 Duration of
result set.

(eg. if duration: {value = 5, unit = m} and
offset=0, return results for the last 5
minutes)

- duration:
value

int 1 Time value.

- duration:
unit

string 1 Time unit. ¶ s - seconds

¶ m - minutes

¶ h - hours

¶ d - days

¶ w - weeks

¶ y - years

offset container 1 Offset of query Time in the past relative to the current
query evaluation time.

- offset:
value

int 1 Time value.

- offset: unit string 1 Time unit. ¶ s - seconds

¶ m - minutes

¶ h - hours

¶ d - days

¶ w - weeks

¶ y - years

Table 14: Data model for expression alert. It represents the time-series data of a specific alert.

expression: alert

ID Type Cardinality Description Functionality Comments

name string 1 Alert name. It is the metric identifier in the time-series DB.

label_list list
<container>

1 Filter labels. Labels to be used as filters for the selection of the
metric. (eg. metric_name)

duration container 1 Duration of
result set.

(eg. if duration: {value = 5, unit = m} and offset=0,
return results for the last 5 minutes)

- duration:
value

int 1 Time value.

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 33 of 118

- duration:
unit

string 1 Time unit. ¶ s - seconds

¶ m - minutes

¶ h - hours

¶ d - days

¶ w - weeks

¶ y ς years

offset container 1 Offset of query. Time in the past relative to the current query
evaluation time.

- offset:
value

int 1 Time value.

- offset: unit string 1 Time unit. ¶ s - seconds

¶ m - minutes

¶ h - hours

¶ d - days

¶ w - weeks

¶ y ς years

Table 15Υ 5ŀǘŀ ƳƻŘŜƭ ŦƻǊ ŜȄǇǊŜǎǎƛƻƴ ƻŦ ǘȅǇŜ άƳŀǘƘŜƳŀǘƛŎŀƭ ƻǇŜǊŀǘƛƻƴέΦ Lǘ ŀƭƭƻǿ ǘƻ ǇŜǊŦƻǊƳ ƳŀǘƘŜƳŀǘƛŎŀƭ ƻǇŜǊŀǘƛƻƴǎ ǳǎƛƴƎ ǘƘŜ
result sets of multiple expressions.

expression: mathematical_operation

ID Type Cardinality Description Functionality Comments

mathematical_operator string 1 Mathematical operator. ¶ + (addition)

¶ - (subtraction)

¶ * (multiplication)

¶ / (division)

¶ % (modulo)

¶ ^ (power/exponentiation)

expression_list list
<container>

1 List of expressions which will be
operands of the mathematical
operation.

- expression_list:
expression

container n See expression

2.3.3. Interfaces

2.3.3.1. Internal Interfaces
The internal interfaces of the Monitoring & Analytics component are inherited from the Prometheus
monitoring platform.

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 34 of 118

2.3.3.2. External Interfaces
The detailed interfaces of the Monitoring & Analytics component, which interact with external components
along with the workflows in which they are used, are discussed below. The Monitoring & Analytics system
expects requests from the CHARISMA GUI back-end to register and manage system users, and to monitor
target resources and alert rules. Alert notifications (generated after evaluating alert rules) are sent to the
Service Policy Manager at the first evaluation time, in order to signal the beginning of an event, and at the
last evaluation time to signal the end of the event. The Monitoring & Analytics system also offers an endpoint
to query the time-series monitoring data and the alert notifications, which are used by the Visualization
module.

The following sections provide details on the external interfaces of the MA component regarding user
management, target resource management, alert rule management, alert notifications, and data querying.
For each interface, we provide a workflow diagram detailing the components that are involved, and the
information exchanged between the components, as well as the implementation details.

User Management Interactions:
1. Register new User

Interface exposed by the MA for registering a new user.

Figure 16: User registration workflow.

Table 16: User registration request information

Method POST

URL monitoring/register_user

Headers Content-Type: application/json

Request Body user container in JSON format.

Returns Success: 201 - Failure: 400, 401, 404, 500

2. Get registered Users

Interface exposed by the MA for getting the list of registered users.

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 35 of 118

Figure 17: Available user retrieval workflow.

Table 17: Get registered users request information

Method GET

URL monitoring/get_users

Headers Content-Type: application/json

Returns Success: 200 - Failure: 400, 401, 404, 500

Body: List < user > in JSON format

3. Edit registered User

Interface exposed by the MA for editing a registered user.

Figure 18: User modification workflow.

Table 18: Edit registered user request information

Method PUT

URL monitoring/edit_user?userID=value

Headers Content-Type: application/json

Request Body user container in JSON format.

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 36 of 118

Returns Success: 204 - Failure: 400, 401, 404, 500

4. Delete registered User

Interface exposed by the MA for deleting a registered user.

Figure 19: User deletion workflow.

Table 19: Delete registered user request information

Method DELETE

URL monitoring/delete_user?userID=value

Headers Content-Type: application/json

Returns Success: 204 - Failure: 400, 401, 404, 500

Target Resource Management Interactions:

1. Register new Target Resource

Interface exposed by the MA for registering a target resource.

Figure 20: Target resource registration workflow.

Table 20: Register target resource request information

Method POST

URL monitoring/register_target_resource

Headers Content-Type: application/json

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 37 of 118

Request Body target_resource container in JSON format.

Returns Success: 201 - Failure: 400, 401, 404, 500

2. Get registered Target Resources by User ID, by Target Resource ID, IP, Name

Interface exposed by the MA for getting the list of registered target resources.

Table 21: Get registered resources request information

Method POST

URL monitoring/get_target_resource

Headers Content-Type: application/json

Request Body {
 "target_resource":{
 "user_id":1,
 "id":1,
 "ip":"10.0.0.1",
 "name": "target resource name"
 }
}

Returns Success: 200 - Failure: 400, 401, 404, 500

Body: List < target_resource > in JSON format

3. Edit registered Target Resource

Interface exposed by the MA for editing a registered target resource.

Figure 21: Target resource retrieval workflow.

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 38 of 118

Figure 22: Target resource modification workflow.

Table 22: Edit registered resource request information

Method PUT

URL monitoring/edit_target_resource?targetResourceID=value

Headers Content-Type: application/json

Request Body target_resource container in JSON format.

Returns Success: 204 - Failure: 400, 401, 404, 500

4. Delete registered Target Resource

Interface exposed by the MA for deleting a registered target resource.

Figure 23: Target resource deletion workflow.

Table 23: Delete registered resource request information

Method DELETE

URL monitoring/delete_target_resource?targetResourceID=value

Headers Content-Type: application/json

Returns Success: 204 - Failure: 400, 401, 404, 500

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 39 of 118

5. Get Metrics Available

Interface exposed by the MA for retrieving the list of available metrics.

Figure 24: Available target resource metric retrieval workflow.

Table 24: Retrieve available metrics request information

Method GET

URL monitoring/get_metrics_available?targetResourceID=value

Headers Content-Type: application/json

Returns Success: 200 - Failure: 400, 401, 404, 500

Body: List < target_resource:metric > in JSON format

Alert Rule Management Interactions:

1. Register new Alert Rule

Interface exposed by the MA for registering a new alert rule.

Figure 25: Alert rule registration workflow.

Table 25: Register alert rule request information

Method POST

URL monitoring/register_alert_rule

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 40 of 118

Headers Content-Type: application/json

Request Body alert_rule container in JSON format

Returns Success: 201 - Failure: 400, 401, 404, 500

2. Get registered Alert Rules by User ID

Interface exposed by the MA for retrieving registered alert rules by user.

Figure 26: Alert rule retrieval workflow.

Table 26: Get registered alert rule by user request information

Method GET

URL monitoring/get_alert_rules?userID=value

Headers Content-Type: application/json

Returns Success: 200 - Failure: 400, 401, 404, 500

Body: List < alert_rule > in JSON format

3. Edit registered Alert Rule

Interface exposed by the MA for editing a registered alert rule.

CHARISMA - D3.4 Intelligence-driven v-security, inc. content caching and traffic handling Page 41 of 118

Figure 27: Alert rule modification workflow.

Table 27: Edit registered alert rule request information

Method PUT

URL monitoring/edit_alert_rule?alertRuleID=value

Headers Content-Type: application/json

Request Body alert_rule container in JSON format

Returns Success: 204 - Failure: 400, 401, 404, 500

4. Delete registered Alert Rule

Interface exposed by the MA for deleting a registered alert rule.

Figure 28: Alert rule deletio workflow.

Table 28: Delete registered alert rule request information

Method DELETE

URL monitoring/delete_alert_rule?alertRuleID=value

Headers Content-Type: application/json

