Security and Privacy Challenges in 5G Networks

Georgios Karopoulos
Department of Informatics and Telecommunications
University of Athens
Outline

• 5G architecture
• 5G use cases
• 5G characteristics
• Security in 2G, 3G, 4G
• What is different in 5G?
• Potential targets in 5G networks
5G architecture

5G use cases

• Broadband experience everywhere, anytime
• Internet of Things (IoT)
• Smart vehicles and transportation
• Critical Infrastructures, e.g. Smart Grid
 • SMART-NRG (http://smart-nrg.net)
5G characteristics

• Not mature, not standardized yet from 3GPP
• The vision is to be deployed by 2020 and beyond
• Higher bandwidth and networking capability, extensive signal coverage
• Integration of existing technologies with new methods
• This leads to security and privacy challenges
Security in 2G, 3G, 4G

- Targeted protection
 - Only a few basic services to protect: initially voice only, later on data

- Limited protection needs
 - User: data encryption, basic identity protection (temporary IDs)
 - Network: strong authentication for billing (solved with SIM cards)

- Relative stability
 - Threats did not change much over time
 - Countermeasures included in next generations

- Successful overall
 - It has worked well in general
 - Although there were some crypto issues (mainly in 2G)
 - Zero-config from the user’s point of view
What is different in 5G?

• New business and trust models
• New service delivery models
• Increased privacy concerns
• Evolved threat landscape
New business and trust models

• Not only voice and data in a well defined network structure but different devices (mobile phones, tablets, unattended machines, sensors, smart meters, cars), architectures (cloud, IoT)

• Higher bitrate, lower latency, more devices

• Connecting industries: manufacturing, transport, smart grid, e-health

• 5G will have a crucial role in society operation and security, privacy and resilience will span beyond technology involving regulation and legal frameworks
New service delivery models

• Cloud, virtualization, anything-as-a-service:
 • Reduce costs, deploy and optimize services more rapidly
 • Increase dependency on secure software
 • Decoupling software and hardware means that software can no longer rely on the security attributes of dedicated hardware

• Telecom network Application Programming Interfaces (APIs)

• Mixing of provider with third-party applications, shared and dedicated hardware platforms
 • Strong isolation properties are necessary
Increased privacy concerns

• Awareness of user privacy in society has been increased after recent events and news stories (Julian Assange, Edward Snowden)
• Big data analytics push these concerns further
• The approach followed in 3G with permanent and temporary identities did not actually solved the issue

Source: Christoforos Ntantogian, Grigoris Valtas, Nikos Kapetanakis, Faidon Lalagiannis, Georgios Karopoulou, Christos Xenakis: Attacking GSM Networks as a Script Kiddie Using Commodity Hardware and Software. TrustBus 2015: 73-86
Evolved threat landscape

• 5G will be a Critical Infrastructure itself suffering from cascading effects
 • Example: a malfunction in a gas infrastructure can lead to a blackout which can lead to loss of telephony and internet access

• Data are critical in decision-making and value creation: 5G networks will be the carriers of such data, thus adequate protection measures are needed

• 5G security protocols should be designed with attack resistance in mind while phasing out traditional methods that are not effective anymore (for example username/password authentication)

• Emphasis should be given to measurable security assurance and compliance due to legal and regulatory concerns
Potential targets in 5G networks

• The most attractive target in 5G will be:
 • User equipment
 • Access networks
 • Mobile core and external IP networks

• In the following, threats and attacks against legacy systems (2G/3G/4G) that can affect 5G will be explored
User equipment

• Equipment examples: powerful smartphones and tablets
• Why user equipment is targeted?
 • Popularity
 • Increased data transmission in 5G
 • Adoption of open operating systems and third-party app stores
 • Large variety of connectivity options (2G/3G/4G/5G, WiFi, Bluetooth)
User equipment

• Mobile malware
 • Innocent looking applications downloaded from an untrusted app store
 • Exploit or steal personal data
 • Mount attacks (e.g. DoS) against the same UE or other entities (other UE, own or other networks)

• Mobile botnets
 • Target many UE at the same time in an automated way
 • Networks of compromised UE under the (remote) control of the bot-master
 • Distributed DoS (DDoS) attacks, spamming, theft of sensitive data, infection of other UE
Access networks

• Attacks on 4G
 • UE location tracking in a specific or over multiple cells
 • Attack the packet scheduling algorithm to steal bandwidth
 • Message insertion leads to DoS attack against a new arriving UE

• Femtocell attacks
 • Physical tampering with equipment (interference with other devices)
 • Configuration attacks (misconfiguration of ACL)
 • Protocol attacks (MitM during first access)
 • Attacks on mobile operator’s core network from compromised nodes
 • Credential theft, user data and identity privacy attacks from open access nodes
 • Attacks on radio resources and management to increase handovers
Mobile core and external IP networks

• DDoS attacks
 • Signaling amplification
 • Home Subscriber Server (HSS) saturation

• DDoS attacks targeting external entities over a mobile operator’s core network

• Compromise enterprise networks through bring-your-own-device (BYOD) trend
Conclusion

• 5G will support the vision of “everything connected”
• Instead of individual security mechanisms, a systematic and analytical approach is needed
• 5G security cannot be “copied” from 4G (or older) security
• While there are still valid security approaches they need to be revisited (trust models, devices, assurance)
• Attacker targets include pretty much everything: user devices, access and core networks, home and external networks
Thank you!

Georgios Karopoulos
University of Athens
gkarop@di.uoa.gr